
J .  FZuid Mech. (1983), wol. 127, p p .  355-364 
Printed in Great Britain 

353 

Boundary-layer transition on a rotating cone in still fluid 
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A linear stability analysis and experiments were carried out for the laminar-turbulent 
transition of three-dimensional incompressible boundary layers induced on the 
surface of a cone rotating around the axis of symmetry with constant angular speed 
in still fluid. Five cones having total angle of 30°-1500 were tested. The results show 
that the critical and transition Reynolds numbers, the direction of spiral vortices 
appearing in the transition region and their number on a cone increase as the cone 
angle is increased, and they tend to the values for the case of a rotating disk. Flow 
visualizations were made for the transitional process and also for cross-sectional flows 
of spiral vortices. 

1. Introduction 
The purpose of this paper is to study the laminar-turbulent transition in 

three-dimensional boundary layers induced on the surface of a cone rotating in still 
fluid. A similar transition has already been measured in detail for three-dimensional 
viscous flow over a circular disk rotating in still fluid by several investigators 
(Gregory, Stuart & Walker 1955; Chin & Litt 1972; Kobayashi, Kohama & 
Takamadate 1980; Malik, Wilkinson & Orszag 1981). Although, for rotating cones 
in still fluid, transition Reynolds numbers were measured by Tien & Campbell (1963) 
and Kappesser, Greif & Cornet (1973) using mass-transfer techniques, and by Kreith, 
Ellis & Giesing (1962) using a small microphone and a hot-wire probe, the detailed 
structure of the transition region has not yet been clarified. I n  the preceding paper 
(Kobayashi, Kohama & Kurosawa 1983) attention is mainly devoted to  the behaviour 
of spiral vortices in the transition region on a 30' cone rotating in external axial flow. 

The present paper is concerned with the transition on five cones having total angle 
30'-150' that  are rotating in still fluid. The results are compared with those for a 
rotating disk as a special case. We present first a linear stability theory and then 
describe an experiment, carried out for det,ermination of the transition region and 
for the characteristics of spiral vortices appearing in this region. 

2. Theoretical consideration 
2.1. Perturbation equations 

A cone is rotating around the axis of symmetry with a constant angular speed w in 
still fluid, as shown in figure 1 .  It is well known for a rotating circular disk that 
logarithmic spiral vortices appear in the transition region of flow induced over the 
disk. By analogy with the rotating disk, we assume that spiral vortices appear as small 
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w 
FIGURE 1. Rotating cone in still fluid and coordinate system. 

disturbances in laminar boundary layer along the rotating cone having a total angle 
20, when the boundary layer becomes unstable. We use here an orthogonal curvilinear 
coordinate system (x‘, y’, z’) where the origin 0‘ is fixed on the surface of the rotating 
cone. The two axes of x’ and y’ on the surface are set along a pair of logarithmic spirals 
through the origin O f ,  where they make a right angle. The direction of the y’ axis 
is chosen to coincide with the axis of spiral vortices, so that the x’ axis makes an angle 
E to  the meridian of the cone. The z’ axis is normal to  the cone surface. Because a 
process for introducing perturbation equations from unsteady Navier-Stokes equa- 
tions follows closely the one (Kobayashi 1981) for the rotating cone in external axial 
flow, we give here only an outline of the present linear stability theory. If we denote 
the x’ and y’ components of the velocity in the laminar boundary layer by and 
v, and the meridional and circumferential components by _ _  0 and P respectively, as 
shown in figure 1 ,  then the relations between (0, P) and ( U ,  V )  are 

(1) 
7 8= Ocoss+Psine ,  T= Osine-I. COSE. 

Velocity disturbances of the spiral vortices are given in vector form as 

(2) ”’ = qZ’) ei(ax’-ht) ,  

The amplitude function 0 has three components .ii, 23? 8 along the x’, y’ and z’ axes. 
The wavenumber a of the spiral vortices is real; h is complex, with the real part A, 
related to the phase velocity h,/a, and the imaginary part hi being the rate of 
amplification ; t is the time. We introduce the following dimensionless expressions : 

where 6, denotes the displacement thickness calculated by using the circumferential 
component of the velocity in the laminar boundary layer, R the radius of a local 
circular cross-section, w R  the local circumferential velocity of tfhe surface, and 1’ the 
kinematic viscosity of the fluid. Perturbation equations for the present problem are 
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then expressed as a system of ordinary differential equations: 

{ ( c  - U )  cos s + 6' sin s} w,, 

i + 
- l J ,  w cos 6' cos2 e + 2 cos s { i ~ (  I' cos s- 1 ) cos 6' - 1; sin O} 2) 

( c  - U )  cos 8- I7 cos 8 sin2 s + - ( V ,  sin e- U, cos e) sin 8 i U 

+sin O(c. sine-2 T.' cossf2)  v, 

a a 

uRe U 
- ( u ~ , - U ~ 0 ) + ( I ~ - ~ ) 2 1 - - ~ ~  

(4) 

ia.u+w,+s'{(u c o s ~ + w  sins) s i n 8 t u i  cos6' = 0, (6) 

where the subscript z denotes differentiation with respect to z .  
The boundary conditions that follow from the requirement of no slip a t  the wall 

surface ( z  = 0) are u = v = w = 0. As the other three boundary conditions it is 
reasonable to take u, 1 1 ,  w --+ 0 not a t  an outer edge of the boundary layer but a t  a 
point ( z  --f 00) far from the surface, because the small-wavenumber spiral vortices 
grow through the outer edge of the boundary layer. In  view of the continuity equation 
(6), the boundary conditions for the perturbation equations (4) and (5) are written 
as 

'U = w = w, = 0 ( z  = O ) ,  
0, w, w, + co (2 + co). 

The present linear stability theory is now reduced to an eigenvalue problem for 
solving the perturbation equations (4) and (5) under the boundary conditions (7 ) ,  in 
which the eigenfunctions are v ( z )  and w(z) .  After determining the two components 
v(z )  and zo(z), the other component u(z)  can be obtained from (6). It should be noted 
that the perturbation equations (4)-(6) are of the same form as those for a rotating 
cone in axial flow (Kobayashi 1981), when S was put formally equal to unity in the 
latter (S was the local rotational speed ratio w R / U ,  and U ,  denoted the local flow 
velocity at the outer edge of the boundary layer). For the numerical procedure for 
solving the present eigenvalue problem we therefore refer to Kobayashi (1981). 

2.2. Numerical results 
Wu (1959) and Tien (1960) showed under boundary-layer approximations that 
velocity distributions in the laminar boundary layer along a rotating cone in still fluid 
can be obtained from Karman's differential equations for viscous flow on a rotating 
disk (Karman 1921). In  order to use the velocity field in (4) and (5), we calculated 
it numerically from Karman's equations, which gave the displacement thickness 
8, = 1*271(v/w sin@+. The curvature parameter s' was then related to the rotational 

1*616/sin 8 Reynolds number Re by 
s'= 

Re ' 
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FIGURE 2.  Stability diagram for 0 = 15' and E = 0'. Curve ( a )  shows the g-values at which the 
amplification factor mi becomes maximum for each value of Re. ilrl is the point at which mi becomes 
maximum for all values of Re. Re, = 50.5, uc = 0.95, Re, = 166, u, = 1.6. 

Figure 2 is one of the stability diagrams for a half-cone angle 8 = 1 5 O ,  showing the 
case c = 0' for the spiral angle. The parameter mi ( =  hi SJwR) denotes the 
amplification factor of the vortices, so that the curve for mi = 0 is in a state of neutral 
stability and the region for mi > 0 gives an unstable state. Curve (a) is drawn for 
the wavenumber 
for each value of the Reynolds number Re. There exists further the maximum value 
(q)max along the curve (a )  at a certain Reynolds number, namely Re,, as shown 
at the point M .  The critical Reynolds number Re, is obtained as the minimum value 
of Re along the curve of neutral stability (ai = 0). The two wavenumbers associated 
with Re, and Re, are denoted by (T, and v, respectively. 

Figure 3 shows variations of Re, and Re, with artificially given values of the spiral 
angle c. It can be said that both Reynolds numbers Re., and H e ,  vary little as the 
spiral angle e is changed. Figure 4 shows the maximum amplification factor 
for various values of Re and c. The curve ( b )  represents the values of for 
Re = Re,. It should be noted that there exists a maximum of the amplification factor 
at a certain value of the spiral angle 6. In the case of figure 4 for 6 = 15' the angle 
E is equal to 0'. It might therefore be concluded that the expected angle E of the 
spiral vortices is c = 0' in the case of the half-cone angle 8 = 15". 

Similar calculations were made for the other cases 8 = 30', 45', 60' and 75'. The 
numerical results are given in table 1. I n  figure 10 the theoretical relation of the spiral 
angle c to the half angle 8 is drawn with a full line. As 8 is increased, the spiral angle 
e increases from 0' up to  the value 14.0' for the rotating disk (8 = 90'). In  figure 9 
a conventional Reynolds number Re, is used for direct comparisons with experiments. 
A full line gives the theoretical result, where the Reynolds number Re,( = wZ2 sin2 8/v) 
based on a local radius 1 sin 6 of rotation was calculated from the Reynolds number 
Re( = wRS, / v )  based on the displacement thickness 6, by use of the relation 
Re, = 0.619Re2 sin 8. The present analysis shows that the critical Reynolds number 
Re,, increases with increasing cone angle 6. Comparisons with experiments will be 
mentioned in 53. 

Figure 5 illustrates streamlines a t  an unstable st,ate (Re = 100, (T = 1.4) for 0 = 15' 
and c = O', which were obt,ained from the velocity perturbations calculated as 

at which the amplification factor mi becomes maximum 
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FIGURE 3. Variations of critical Reynolds number Re, and Reynolds number Re, for the maximum 
amplification with artificially given direction E of the spiral vortices; 0 = 15'. 

E 

FIGURE 4. Variations of the maximum amplification factor (mi)max with artificially given direction 
E of the spiral vortices; 0 = 1 5 O .  Curve ( b )  gives the maximum (mi)max a t  each value of E.  

f f  2ff 3* 

ax' - A r t  

FIGURE 5.  Streamlines of the spiral vortices in the boundary layer; 
q5 = 1 5 O ,  B = Oo, Re = 100, = 1.4. 

eigenfunctions. It is clear that there exists for 8 = 15' one pair of counter-rotating 
vortices per wavelength. For the case of a rotating disk (8 = go'), i t  is known that 
a unidirectional vortex appears in one wavelength (Gregory et al. 1955; Kobayashi 
et al. 1980). It might therefore be said that the type of vortices in the boundary layer 
of the rotating cone changes from unidirectional vortices to pairs of counter-rotating 
vortices as the cone angle is decreased from 8 = 90' to 15'. 



0 15
' 

30
' 

45
' 

60
' 

7 5
' 

90
' 

R
e,

, 
c 

&
 

R
e,

 
6

,
 

R
e,

 
ur

n 
R

e,
, t

 
T

he
or

y 
T

he
or

y 
T

he
or

y 
T

he
or

y 
T

he
or

y 
E

xp
er

im
en

t 
E

xp
er

im
en

t 
T

he
or

y 
E

xp
er

im
en

t 

5
0

5
 

0
9

5
 

16
6 

1.
6 

4.
09

 x
 1

0
2

 
1.

01
 x

 1
03

 
4

8
7

 x
 1

03
 

00
' 

0' 
13

4 
0

6
8

 
47

5 
0

9
0

 
5

5
5

 x
 1

03
 

9.
95

 x
 1

03
 

6.
15

 x
 1

04
 

2.
7' 

1' 
26

5 
0

5
4

 
10

00
 

0-
64

 
3.

08
 x

 1
04

 
3.

74
 x

 1
04

 
1.

81
 x

 1
05

 
8.

5'
 

1 0
' 

31
0 

0.
52

 
14

80
 

0
5

5
 

5
1

5
 x

 1
04

 
6-

32
 x

 1
04

 
2.

68
 x

 1
05

 
12

.5
' 

12
' 

32
4 

0
5

0
 

17
00

 
0

5
3

 
6-

28
 x

 1
04

 
8.

42
 x

 1
04

 
3.

07
 x

 1
05

 
13

.5
' 

13.
4' 

33
2 

0
4

7
 

6.
82

 x
 l

o
4

 
8.

8 
x 

10
4 

3.
2 

x 
10

5 
14

.0
' 

14
' 

T
A

B
L

E
 

1.
 N

um
er

ic
al

 d
at

a 
fo

r 
th

e 
tr

an
si

ti
on

 r
eg

io
n 

of
 b

ou
nd

ar
y 

la
ye

rs
 i

nd
uc

ed
 o

ve
r 

th
e 

ro
ta

ti
ng

 c
on

es
 i

n 
st

il
l 

fl
ui

d;
 

d
at

a 
fo

r 
0 

=
 9

0' 
ar

e 
fr

om
 K

ob
ay

as
hi

 e
t 

al
. 

(1
98

0)
 

* 
n 

@ 
E

xp
er

im
en

t 
;1"

 
cy

 
8
 

m z
 

Q
 

22
 - 2

3 
26

 - 2
7 

30
 - 3

1 
31

 - 3
2 

% 



Boundary-layer transifion on a rotating cone in still &id 359 

FIGURE 6. Flow pattern of boundary layer on a rotating cone in still fluid; 0 = 15'. 

3. Experiments 
3.1. Apparatus and procedure 

The present experiments were conducted for five test cones having half-angle 8 = 15', 
30°, 45', 60' and 75'. The generation lengths L of the test cones are 173-8 mm for 
8 = 15' and 200.0 mm for 8 = 30°, 45', 60' and 75'. The cones were rotated at 
constant angular speeds around a horizontal axis set at a height of 1065 mm above 
the floor in still air. The rotating speed can be varied continuously up to 3500 r.p.m. 
by using a 400 W d.c. motor and a V-belt. The test cones are made of aluminium 
alloy and finished smooth. We used a hot-wire anemometer to measure the velocity 
field and also a frequency analyser as the occasion arose. I n  order to visualize 
boundary-layer flows, the surfaces of the test cones were painted in black and were 
spread with titanium tetrachloride. 

3.2. Flow visualizations of the transition region 
We first show photographs visualizing flow patterns over the surface of the rotating 
test cones in figures 6 and 7. Figure 6 is for half-angle 8 = 15', in which one can see 
a transition region as stripes, a laminar boundary layer on the left of the transition 
region and a turbulent boundary layer on its right. Figure 7 is for 8 = 60°, in which 
spiral vortices are clearly observed in the transition region. The test cones in figures 
6 and 7 are rotating in the same direction as the cone illustrated in figure 1 .  

I n  figure 8, cross-sections of the vortices are made visible by a sheet of strobolight 
along the meridian of the rotating test cones. I n  photograph ( a )  for 8 = 1 5 O ,  one 
observes apparently pairs of counter-rotating vortices as expected in figure 5 .  The 
fact that  the centre of the right vortex in a pair is nearer to the surface than that 
of the left vortex agrees qualitatively again with figure 5. Photograph ( b )  for 8 = 30' 
shows that a vortex appearing a t  first rotates in the left direction. It is remarked that 
this direction is the same as the case of a rotating disk (Kobayashi et al. 1980). We 
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FIQURE 7 .  Flow pattern of boundary layer on a rotating cone in still fluid; 
direction of rotation clockwise, 6' = 60°. 

considered therefore that the pairs of counter-rotating vortices for 8 = 15' might 
transfer continuously to the unidirectional vortices for 8 = 90° as the cone angle is 
increased. 

3.3. Critical and transition Reynolds numbers 

As explained in the preceding paper (Kobayashi et al. 1983), the critical position 5Zc 
of the transition region was measured as the point where periodical signals from the 
hot-wire probe were detected a t  a certain frequency in a frequency spectrum. The 
transition position iEt was defined as the state where velocity fluctuations gave a 
frequency spectrum for the turbulent boundary layer. 

The measured critical and transition Reynolds numbers, defined as 
Re,, = O J ~ $  sin2 B / v  and Re,, = w2: sin2 8/v, are given in figure 9 and table 1 .  The 
values of Re,, and Rex3 remained constant as the rotational speed N of the cone 
was varied, which is similar to the case of a rotating disk (Kobayashi et al. 1980). 
I n  figure 9 the present experiment is compared with previous experiments and also 
with the aforementioned analysis. Kreith et al. (1962) detected the transition region 
by using a small microphone and a hot-wire probe. Kappesser et al. (1  973) determined 
the transition Reynolds number by measuring the mass transfer of oxygen to a 
rotating cone. Tien & Campbell (1963) also gave Re,, = (1.3-1.8) x lo5 and 
Re,, = (1.4-25) x lo5 for B = 45O-9Oo as well as Re,, = 5 x lo4 for 8 = 30° using the 
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FIGURE 8. Cross-sectional flows of vortices: (a )  0 = 15'; ( b )  0 = 30°. 

mass transfer of naphthalene; these are not shown in figure 9. These previous results 
are included between the present critical and transition Reynolds numbers shown 
with two broken lines. The previous values are rather close to  the present transition 
Reynolds number. The differences among the experimenters seem to come from the 
sensitivity of the detection techniques. It should be noted that the present analysis 
gives results close to the present experiment. Numerical differences between the 
present analysis and experiment are given in table 1 .  

For a rotating cylinder (0 = 0') in still fluid, Walowit, Tsao & DiPrima (1964) said 
that the critical Reynolds number Re,, becomes approximately 1 1  as estimated from 
their numerical results of stability analysis for viscous flow between two rotating 
concentric cylinders. Theodorsen & Regier (1944) gave the transition Reynolds 
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4,  I I I I I I 

e 
FIGURE 9. Critical Reynolds number Re,, and transition Reynolds number Re,, t .  ~ , present 
theory for Re,, c .  Present experiments: 0, for Re,. ; 0 ,  for Re,, t .  Previous experiments: + , Kreith 
et al. (1962) (small microphone), ---, Kreith et al. (hot wire); x , Kappesser et al. (1973), (mass 
transfer). 

number Re,, z 10 by measuring the moment of a rotating cylinder. Flow visualiza- 
tions by Chen & Christensen (1967) and Kirchner & Chen (1970) showed Re,, = 30. 
The theoretical and measured results in figure 9 seem to be consistent with these 
previous values for 0 = 0". 

3.4.  Measurements of spiral vortices 

Figure 10 shows the direction e of the vortex axis in relation to  the cone angle 0. The 
angle e was measured directly on photographs of flow visualization, where uncertainty 
intervals for measurements of e were f 1.0". The figure indicates that  the spiral angle 
c increases from e = 0" for 0 = 15' to c = 14' for 0 = 90" (rotating disk), and that 
the present theory agrees favourably with the experimental data. 

Figure 11 represents the number n of spiral vortices appearing on the test cones, 
which was measured from many photographs under various conditions of the cone 
angle and the rotational speed N ;  for example, in the case of 0 = 4 5 O ,  photographs 
of 40 sheets were taken, in which 31 sheets gave n = 22 or 23 and the other sheets 
were in a range of n = 3@24. The solid line in figure 1 1  is drawn through the 
experimental results. It is clear from the figure that the number n of spiral vortices 
increases as the cone angle 0 is increased. For the cone of 0 = 30' i t  was difficult to 
measure the number n of vortices, because the direction c of the vortices became about 
lo, as shown in figure 10. 
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FIGURE 11. Number n of spiral vortices appearing on a rotating cone in relation to the 

cone angle 8 :  0, rotating disk (Kobayashi et al. 1980). 

4. Conclusions 
The laminar-turbulent transition region on cones rotating in still fluid was studied 

by the linear stability theory and the experiment. The resdts are summarized as 
follows. 

(i) The theoretical prediction that the laminar boundary layer becomes unstable 
for disturbances of spiral vortex type was confirmed by flow visualizations. The 
cross-sectional flow of the spiral .vortices consisted of pairs of counter-rotating 
vortices in the case of 8 = 15', while unidirectional vortices appear in the other 
extreme case of 8 = 90' (rotating disk). We consider that the spiral vortices changes 
continuously from counter-rotating vortices to unidirectional vortices as the cone 
angle is increased from 8 = 15'. 

(ii) The critical and transition Reynolds numbers become larger as the cone angle 
is increased, as shown in figure 9. The theoretical result for the critical Reynolds 
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number agrees favourably with the measurement. One of the reasons for differences 
between both of the critical Reynolds numbers might be the more-complex velocity 
disturbances a t  the onset of vortices than the theoretical expression ( 2 ) ,  as seen in 
figure 8. 

(iii) The spiral angle increases from e = 0' for B = 15' to e = 14' for 0 = 90°, as 
shown in figure 10. The number of spiral vortices increases from 22 or 23 for 0 = 45' 
to 31 or 32 for 0 = 90'. 

The authors would like to  thank Dr Y .  Kohama, Institute of High Speed 
Mechanics, Tohoku University, for his help in the flow visualizations. 
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